Diagnóstico de malaria en un centro de referencia: Pasado, presente y futuro

Autores/as

  • Sandra Martín Ramírez Laboratorio de Malaria y Protozoos Emergentes, Centro Nacional de Microbiología, Instituto de Salud Carlos III
  • Carlota Muñoz Garcia Laboratorio de Malaria y Protozoos Emergentes, Centro Nacional de Microbiología, Instituto de Salud Carlos III
  • Marta Lanza Laboratorio de Malaria y Protozoos Emergentes, Centro Nacional de Microbiología, Instituto de Salud Carlos III
  • Lourdes Barón Argos Laboratorio de Malaria y Protozoos Emergentes, Centro Nacional de Microbiología, Instituto de Salud Carlos III
  • Alejandra Jiménez Mejías Laboratorio de Malaria y Protozoos Emergentes, Centro Nacional de Microbiología, Instituto de Salud Carlos III
  • Jose Miguel Rubio Laboratorio de Malaria y Protozoos Emergentes, Centro Nacional de Microbiología, Instituto de Salud Carlos III https://orcid.org/0000-0002-1903-6711

DOI:

https://doi.org/10.37536/RIECS.2021.6.S1.245

Palabras clave:

Diagnóstico microscópico, Diagnóstico molecular, PCR, LAMP, Microscopía automática

Resumen

La principal estrategia para el control de la malaria, según la Organización Mundial de la Salud (OMS), es un diagnóstico rápido y adecuado seguido de un tratamiento efectivo. Los laboratorios de referencia de microbiología tienen entre sus funciones el desarrollo y validación de nuevas metodologías diagnósticas para ayudar al control y erradicación de la malaria en el mundo y en nuestro caso para evitar la reintroducción en nuestro país. En este trabajo se hace una revisión de los métodos más extendidos para el diagnóstico de malaria: i) métodos clásicos, como son la microscopía y los test de diagnóstico rápido, ii) métodos moleculares, como PCR y LAMP, y, iii) por último, los nuevos avances en microscopía automática e inteligencia artificial.

Citas

Rubio JM, Benito A, Berzosa PJ, Roche J, Puente S, Subirats M, et al. Usefulness of seminested multiplex PCR in Surveillance of imported malaria in Spain. J. Cli. Microbiol. 1999; 37(10): 3260-3264. DOI: 10.1128/JCM.37.10.3260-3264.1999.

European Centre for Disease Prevention and Control. Core functions of microbiology reference laboratories for communicable diseases. Stockholm: ECDC. 2010. DOI: 10.2900/29017.

Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S. Malaria Diagnosis: A brief review. Korean J. Parasitol. 2009; 47 (2): 93-102. DOI: 10.3347/kjp.2009.47.2.93.

Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, Van Voorhis WC, Wells TNC. Malaria. Nat. Rev. Dis. Primer. 2017; 3 (17050). DOI: 10.1038/nrdp.2017.50.

World Health Organization. World malaria report 2020: 20 years of global progress and challenges. Geneva: World Health Organization; 2020.

Torrús D, Carranza C, Manuel Ramos J, Carlos Rodríguez J, Rubio JM, Subirats M, et al. Diagnóstico microbiológico de la malaria importada. Enfermedades Infecc. Microbiol. Clínica. 2015; 33: 40–46. DOI: 10.1016/S0213-005X(15)30014-8.

World Health Organization. Malaria Microscopy Quality Assurance Manual. Version 2. WHO Press, World Health Organization. Geneva, Switzerland. 2016. Disponible en: https://www.who.int/docs/default-source/documents/publications/gmp/malaria-microscopy-quality-assurance-manual.pdf?sfvrsn=dfe54d47_2.

Cañavate C CJ, Martinez Ruiz R, Martin-Rabadan P. El laboratorio de microbiología ante las enfermedades parasitarias importadas. Procedimientos en Microbiología Clínica. 2a ed. SEIMC; 2009.

Rubio JM, Benito A, Roche J, Berzosa P, Garcia L, Mico M, et al. Semi-nested Multiplex PCR on detection of human malaria parasites and evidence of Plasmodium vivax infection in Equatorial Guinea (West Africa). Am Jour Trop Med Hyg. 1999; 60(2): 183-187. DOI: 10.4269/ajtmh.1999.60.183.

Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J. 2014; 13 (68). DOI: 10.1186/1475-2875-13-68.

Ta TT, Salas A, Ali-Tammam M, Martínez MC, Lanza M, Arroyo E, et al. First case of detection of Plasmodium knowlesi in Spain by Real Time PCR in a traveller from Southeast Asia. Malar J. 2010; 27 (219). DOI: 10.1186/1475-2875-9-219.

Barber BE, William T, Grigg MJ, Yeo TW, Anstey NM. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malar J. 2013; 12 (8). DOI: 10.1186/1475-2875-12-8.

Muñoz J, Rojo-Marcos G, Ramírez-Olivencia G, Salas-Coronas J, Treviño B, Perez Arellano JL, et al. Diagnosis and treatment of imported malaria in Spain: Recommendations from the Malaria Working Group of the Spanish Society of Tropical Medicine and International Health (SEMTSI). Enferm Infecc Microbiol Clin. 2015; 33(6): 1-13. DOI: 10.1016/j.eimc.2013.12.014.

Murphy SC, Prescott WR, Stewart VA, Parikh S, Etter P, Shott JP. Malaria Diagnostics in Clinical Trials. Am. J. Trop. Med. Hyg. 2013; 89(5), 824–839. DOI: 10.4269/ajtmh.12-0675.

Mukkala AN, Kwan J, Lau R, Harris D, Kain D, Boggild AK. An Update on Malaria Rapid Diagnostic Tests. Curr. Infect. Dis. Rep. 2018; 20 (49). DOI: 10.1007/S11908-018-0655-4.

Murray CK, Bennett JW. Rapid diagnosis of malaria. Interdiscip Perspect Infect Dis. 2009; 415953. DOI: 10.1155/2009/415953.

Rubio JM, Buhigas I, Subirats M, Baquero M, Puente S, Benito A. Limited level of accuracy provided by available rapid diagnosis tests for malaria enhances the need por PCR-based reference laboratories. J. Clin. Microbiol. 2001; 39 (7): 2736-2737. DOI: 10.1128/JCM.39.7.2736-2737.2001.

Cuadros J, Martín-Rabadán P, Merino FJ, Delgado-Irribarren A, Garcia-Bujalance S, Rubio JM. Malaria diagnosis by NOW ICT and expert microscopy in comparison with multiplex polymerase chain reaction in febrile returned travellers. Eur J Clin Microbiol Infec Dis. 2007, 26(9): 671-673. DOI: 10.1007/s10096-007-0337-x.

World Health Organization. Malaria rapid diagnostic test performance: results of WHO product testing of malaria RDTs: round 8 (2016–2018). Geneva: World Health Organization. 2018.

Charpentier E, Benichou E, Pagès A, Chauvin P, Fillaux J, Valentin A., et. al. Performance evaluation of different strategies based on microscopy techniques, rapid diagnostic test and molecular loop-mediated isothermal amplification assay for the diagnosis of imported malaria. Clinical Microbiology and Infection. 2020; 26 (1): 115-121. DOI: 10.1016/J.CMI.2019.05.010.

Verma AK, Bharti PK, Das A. HRP-2 deletion: A hole in ship of malaria elimination. The Lancet Infectious Diseases. 2018; 18(8): 826-827. DOI: 10.1016/S1473-3099(18)30420-1.

Agaba BB, Yeka A, Nsobya S, Arinaitwe E, Nankabirwa J, Opigo J, et al. Systematic review of the status of pfhrp2 and pfhrp3 gene deletion, approaches and methods used for its estimation and reporting in Plasmodium falciparum populations in Africa: review of published studies 2010-2019. Malar J. 2019; 18(1): 1-10. DOI 10.1186/s12936-019-2987-4.

Berzosa P, de Lucio A, Romay-Barja M, Herrador Z, González V, García L, et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malar. J. 2018; 17 (1): 1-12. DOI: 10.1186/s12936-018-2481-4.

Rubio JM, Benito A. Malaria. En: Rodríguez E, Rubio JM y Alvar J, editores. Diagnóstico de las enfermedades desatendidas: moléculas y trópico. Madrid. España: Pigmalion; 2015. p 31-48.

Snounou G, Viriyakosol S, Xin Ping Zhu, Jarra W, Pinheiro L, do Rosario VE, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993; 61(2): 315–320. DOI: 10.1016/0166-6851(93)90077-B.

Singh B, Sung LK, Matusop A, Radhakrishnan A, Shamsul SS, Cox-Singh J, et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. The Lancet. 2004; 363: 1017–1024. DOI: 10.1016/S0140-6736(04)15836-4.

Rubio JM, Post RJ, Van Leeuwen WMD, Henry MC, Lindergard G, Hommel M. Alternative polymerase chain reaction method to identify Plasmodium species in human blood samples: The semi-nested multiplex malaria PCR (SnM-PCR). Trans R Soc Trop Med Hyg. 2002; 96(SUPPL. 1): S199-S204. DOI: 10.1016/s0035-9203(02)90077-5.

Miguel-Oteo M, Jiram AI, Ta-Tang TH, Lanza M, Hisam S, Rubio JM. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. Asian Pac J Trop Med. 2017; 10(3): 299–304. DOI: 10.1016/j.apjtm.2017.03.014.

Iglesias N, Subirats M, Trevisi P, Ramírez-Olivencia G, Castán P, Puente S, et al. Performance of a new gelled nested PCR test for the diagnosis of imported malaria: Comparison with microscopy, rapid diagnostic test, and real-time PCR. Parasitol Res. 2014; 113: 2587–2591. DOI: 10.1007/s00436-014-3911-z.

Tajebe A, Magoma G, Aemero M, Kimani F. Detection of mixed infection level of Plasmodium falciparum and Plasmodium vivax by SYBR Green I-based real-Time PCR in North Gondar, north-west Ethiopia. Malar J. 2014; 13(411): 1–8. DOI: 10.1186/1475-2875-13-411.

Reller ME, Chen WH, Dalton J, Lichay MA, Dumler JS. Multiplex 5? nuclease quantitative real-time PCR for clinical diagnosis of malaria and species-level identification and epidemiologic evaluation of malaria-causing parasites, including Plasmodium knowlesi. J Clin Microbiol. 2013; 51(9): 2931–2938. DOI: 10.1128/JCM.00958-13.

Notomi T, Okayami H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28(12): 63. DOI: 10.1093/nar/28.12.e63.

Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008; 3: 877–882. DOI: 10.1038/nprot.2008.57.

Lucchi NW, Ndiaye D, Britton S, Udhayakumar V. Expanding the malaria molecular diagnostic options: opportunities and challenges for loop-mediated isothermal amplification tests for malaria control and elimination. Expert Rev. Mol. Diagn. 2018; 18 (2): 195–203. DOI: 10.1080/14737159.2018.1431529.

Cuadros J, Martin Ramírez A, González IJ, Ding XC, Perez Tanoira R, Rojo-Marcos G, et al. LAMP kit for diagnosis of non-falciparum malaria in Plasmodium ovale infected patients. Malar. J. 2017; 16 (20). DOI: 10.1186/s12936-016-1669-8.

Han ET, Watanabe R, Sattabongkot J, Khuntirat B, Sirichaisinthop J, Iriko H, et al. Detection of Four Plasmodium Species by Genus- and Species-Specific Loop-Mediated Isothermal Amplification for Clinical Diagnosis. J. Clin. Microbiol. 2007; 45: 2521–2528. DOI: 10.1128/JCM.02117-06.

Lau YL, Lai MY, Fong MY, Jelip J, Mahmud R. Loop-Mediated Isothermal Amplification Assay for Identification of Five Human Plasmodium Species in Malaysia. Am. J. Trop. Med. Hyg. 2016; 94 (2): 336–339. DOI: 10.4269/ajtmh.15-0569.

Díaz G, González FA, Romero E. A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J. Biomed. Inform. 2009; 42 (2): 296–307. DOI: 10.1016/j.jbi.2008.11.005.

Kaewkamnerd S, Uthaipibull C, Intarapanich A, Pannarut M, Chaotheing S, Tongsima S. An automatic device for detection and classification of malaria parasite species in thick blood film. BMC Bioinformatics. 2012; 13 (S18). DOI: 10.1186/1471-2105-13-S17-S18.

Eshel Y, Houri-Yafin A, Benkuzari H, Lezmy N, Soni M, Charles M, et al. Evaluation of the Parasight Platform for Malaria Diagnosis. J. Clin. Microbiol. 2017; 55: 768–775. DOI: 10.1128/JCM.02155-16.

Dumas C, Tirard-Collet P, Mestrallet F, Girard S, Jallades L, Picot S, et al. Flagging performance of Sysmex XN-10 haematology analyser for malaria detection. J Clin Pathol. 2020; 73 (10): 676-677. DOI: 10.1136/jclinpath-2019-206382.

Choi J, Cho SJ, Kim YT, Shin H. Development of a film-based immunochromatographic microfluidic device for malaria diagnosis. Biomed Microdevices. 2019; 21(86). DOI: 10.1007/s10544-019-0431-8.

Ido Y, Hashimoto M, Yatsushiro S, Tanaka M, Yokota K, Kajimoto K, Kataoka M. Loop-Mediated Isothermal Amplification In Microchambers On A Cell Microarray Chip For Identification of Plasmodium Species. J Parasitol. 2019; 105 (1): 69-74. DOI: 10.1645/18-107.

Mu J, Yu LL, Wellems TE. Sensitive Immunoassay Detection of Plasmodium Lactate Dehydrogenase by Inductively Coupled Plasma Mass Spectrometry. Front Cell Infect Microbiol. 2021; 10 (620419). DOI: 10.3389/fcimb.2020.620419.

Lalremruata A, Jeyaraj S, Engleitner T, Joanny F, Lang A, Bélard S, et al. Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malar J. 2017; 16(398). DOI: 10.1186/s12936-017-2044-0.

Pallen MJ. Diagnostic metagenomics: potential applications to bacterial, viral and parasitic infections. Parasitology. 2014; 141 (14): 1856-1862. DOI: 10.1017/S0031182014000134.

Publicado

26-02-2021