Algo más que monoaminas en el tratamiento de la depresión: Mecanismos neurobiológicos emergentes de los antidepresivos del siglo XXI

Autores/as

  • Cecilio Álamo González Facultad de Medicina y Ciencias de la Salud UAH
  • Cristina Zaragozá Departamento de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá
  • Francisco López-Muñoz Facultad de Ciencias de la Salud, Universidad Camilo José Cela https://orcid.org/

DOI:

https://doi.org/10.37536/RIECS.2020.5.2.214

Palabras clave:

Alopregnanolona, Antidepresivos, Depresión, Hipótesis glutamatérgica, Ketamina, Esketamina, Riluzol

Resumen

Clásicamente, el tratamiento farmacológico de la depresión se ha realizado con antidepresivos monoaminérgicos, que presentan una serie de limitaciones, como un lento inicio de acción, una inadecuada respuesta antidepresiva, disfunción sexual o tolerabilidad mejorable. En esta revisión analizaremos nuevos mecanismos fisiopatológicos implicados en la depresión como dianas para la búsqueda de antidepresivos diferentes. En el ámbito de la endocrinología los resultados son desalentadores, efímeros (TRH), limitados (hormonas tiroideas), dudosos (antagonistas CRH1), controvertidos (estrógenos) o poco eficaces (andrógenos). Varios neuropéptidos están implicados en la patogenia de la depresión, como la hormona antidiurética, la oxitocina, la sustancia P, el neuropéptido Y o la galanina, pero su abordaje desde el punto de vista terapéutico no ha dado resultados terapéuticos. La relación entre depresión y procesos inflamatorios es patente, pero los datos de eficacia, muchas veces anecdóticos, de algunos antiinflamatorios, antagonistas de TNF o anticuerpos monoclonales no pueden generalizarse. La participación del sistema opioide endógeno también se ha explorado, pero su potencial adictivo hace que no dispongamos en estos momentos “opioides antidepresivos”. La hipótesis glutamatérgica de la depresión ha sido trabajada durante más de 3 décadas y por fin parece que ha dado resultados: la esketamina, un isómero de la ketamina, ha demostrado, gracias a un programa de desarrollo clínico robusto, que es un antidepresivo de acción rápida, eficaz en depresión resistente, con una tolerabilidad aceptable, lo que ha motivado su autorización en depresión resistente en asociación con antidepresivos convencionales. La esketamina es la respuesta terapéutica a la “hipótesis glutamatérgica de la depresión”.

Biografía del autor/a

Cecilio Álamo González, Facultad de Medicina y Ciencias de la Salud UAH

Miembro del comité científico de la revista RIECS. Área de conocimiento: Farmacología.

Citas

López-Muñoz F, Alamo C, Juckel G, Assion HJ. Half a century of antidepressant drugs. On the clinical introduction of monoamine oxidase inhibitors, tricyclics and tetracyclics. Part I: Monoamine oxidase inhibitors. J Clin Psychopharmacol. 2007; 27: 555-9

Fangmann P, Assion HJ, Juckel G, Álamo C, López-Muñoz F. Half a century of antidepressant drugs. On the clinical introduction of monoamine oxidase inhibitors, tricyclics and tetracyclics. Part II: Tricyclics and tetracyclics. J Clin Psychopharmacol. 2008; 28: 1-4

Álamo C, López-Muñoz F, García-García P, Rubio G. Modulación noradrenérgica en la fisiopatología y terapéutica de la depresión: una visión actual. Madrid: McGraw-Hill Interamericana de España, S.A.U., 2007

López-Muñoz F, Alamo C. Monoaminergic neurotransmission: the history of the discovery of antidepressants from 1950s until today. Curr Pharm Des. 2009; 15: 1563-86.

López-Muñoz F, Álamo C. Neurobiology of Depression. Boca Raton: CRC Press Taylor & Francis Group, 2012.

López-Muñoz F, Álamo C. Neurobiology of monoaminergic neurotransmission and antidepressants. En: Srinivasan V, Brzezinski A, Oter S, Shillcutt SD, eds. Melatonin and Melatonergic Drugs in Clinical Practice. New Delhi: Springer International, 2014, pp. 321-341

Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012; 62: 63-77.

López-Muñoz F, Álamo C, Rubio G, García-García P, Martín-Agueda B, Cuenca E. Bibliometric analysis of biomedical publications on SSRIs during the period 1980-2000. Depression Anxiety. 2003; 18: 95-103.

Álamo C, López-Muñoz F. Optimizando el tratamiento de los pacientes deprimidos. Depresión y ritmos circadianos: relación farmacológica. El papel de la agomelatina. Rev Psiquiatr Salud Ment (Barc). 2010; 3: S3-11

Álamo C, García-Garcia P, Lopez-Muñoz F, Zaragozá C. Tianeptine, an atypical pharmacological approach to depression. Rev Psiquiatr Salud Ment (Barc). 2019; 12: 170-86.

Seguí J, López-Muñoz F, Alamo C, Camarasa X, García-García P, Pardo A. Effects of adjunctive reboxetine in patients with duloxetine-resistant depression: a 12-week prospective study. J Psychopharmacol. 2010; 24: 1201-7.

Li YF. A hypothesis of monoamine (5-HT) - Glutamate/GABA long neural circuit: Aiming for fast-onset antidepressant discovery. Pharmacol Ther. 2020; 208: 107494.

López-Muñoz F, Álamo C. Historical evolution of the neurotransmission concept. J Neural Transm. 2009; 116: 515-33.

Altemus M. Hormone-specific psychiatric disorders: do they exist? Arch Women Ment Health. 2010; 13: 25-6.

Chávez-Castillo M, Núñez V, Nava M, Ortega Á, Rojas M, Bermúdez V, Rojas-Quintero J. Depression as a Neuroendocrine Disorder: Emerging Neuropsychopharmacological Approaches beyond Monoamines. Adv Pharmacol Sci. 2019; 7943481.

Cuenca E, Álamo C, Gibert J, Serrano MI, Galiana J. Algunos aspectos farmacológicos, bioquímicos y clínicos de los péptidos hipotalámicos TRH y MIF. Madrid: II Congreso de la Federación Española de Sociedades de Biología Experimental, 1981.

Demartini B, Ranieri R, Masu A, Selle V, Scarone S, Gambini O. Depressive symptoms and major depressive disorder in patients affected by subclinical hypothyroidism. J Nerv Ment Dis. 2014; 202: 603–7.

Sanghvi R, Mogalian E, Machatha SG, Narazaki R, Karlage KL, Jain P, et al. Preformulation and pharmacokinetic studies on antalarmin: a novel stress inhibitor. J Pharm Sci. 2009; 98: 205-14.

Menke A. Is the HPA Axis as Target for Depression Outdated, or Is There a New Hope? Front Psychiatry. 2019; 10: 101.

Whedon JM, KizhakkeVeettil A, Rugo NA, Kieffer KA. Bioidentical estrogen for menopausal depressive symptoms: a systematic review and meta-analysis. J Women Health 2017; 26: 18–28.

Jung SJ, Shin A, Kang D. Hormone-related factors and post-menopausal onset depression: results from KNHANES (2010-2012). J Affect Disord. 2015; 175: 176–83.

McHenry J, Carrier N, Hull E, Kabbaj M. Sex differences in anxiety and depression: role of testosterone. Front Neuroendocrinol. 2014; 35: 42–57.

Go?yszny M, Obuchowicz E. Are neuropeptides relevant for the mechanism of action of SSRIs? Neuropeptides. 2019; 75: 1-17.

Griebel G, Beeské S, Stahl SM. The vasopressin V(1b) receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from 4 randomized, double-blind, placebo-controlled studies. J Clin Psychiatry. 2012; 73:1403?411.

Meynen G, Unmehopa UA, Hofman MA, Swaab DF, Hoogendijk WJG. Hypothalamic oxytocin mRNA expression and melancholic depression. Mol Psychiatr. 2007; 12: 118-9.

Catena-Dell'Osso M, Fagiolini A, Marazziti D, Baroni S, Bellantuono C. Non-monoaminergic targets for the development of antidepressants: focus on neuropeptides. Mini Rev Med Chem. 2013; 13: 2?10.

Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, et al. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998; 281 (5383): 1640-5.

Nyman M, Eskola O, Kajander J, Jokinen R, Penttinen J, Karjalainen T, et al. Brain neurokinin-1 receptor availability in never-medicated patients with major depression - A pilot study. J Affect Disord. 2019; 242: 188-94.

Rupniak NMJ, Kramer MS. NK1 receptor antagonists for depression: Why a validated concept was abandoned. J Affect Disord. 2017; 223: 121-5.

Tural U, Iosifescu DV. Neuropeptide Y in PTSD, MDD, and chronic stress: A systematic review and meta-analysis. J Neurosci Res. 2020; 98: 950-63.

Morales-Medina JC, Dumont Y, Benoit CE, Bastianetto S, Flores G, Fournier A, Quirion R. Role of neuropeptide Y Y? and Y? receptors on behavioral despair in a rat model of depression with co-morbid anxiety. Neuropharmacology. 2012; 62: 200-8.

Enman NM, Sabban EL, McGonigle P, Van Bockstaele EJ. Targeting the Neuropeptide Y System in Stress-related Psychiatric Disorders. Neurobiol Stress. 2015; 1: 33-43.

Juhasz G, Hullam G, Eszlari N, Gonda X, Antal P, Anderson IM, et al. Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci USA. 2014; 111(16): E1666-73.

Demsie DG, Altaye BM, Weldekidan E, Gebremedhin H, Alema NM, Tefera MM, et al. Galanin Receptors as Drug Target for Novel Antidepressants: Review. Biologics Targets Ther. 2020: 14; 37–45.

Block SG, Nemeroff CB. Emerging antidepressants to treat major depressive disorder. Asian J Psychiatr. 2014; 12: 7-16.

Mahli GS, Mann JJ. Depression. Lancet. 2018; 392: 2299–312.

Andrade C. Antidepressant augmentation with anti-inflammatory agents. J Clin Psychiatry. 2014; 75: 975-7.

Vojvodic J, Mihajlovic G, Vojvodic P, Radomirovic D, Vojvodic A, Vlaskovic-Jovicevic T, et al. The Impact of Immunological Factors on Depression Treatment - Relation Between Antidepressants and Immunomodulation Agents. Open Acc Maced J Med Sci. 2019; 7: 3064-9.

Ragguett RM, Tamura JK, McIntyre RS. Keeping up with the clinical advances: depression. CNS Spectr. 2019; 24: 28–36.

Berrocoso E, Sanchez-Blazquez P, Garzon J, Mico JA. Opiates as antidepressants. Curr Pharm Design. 2009; 15: 1612–22.

Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev. 2009; 89: 1379–412.

Zajecka JM, Stanford AD, Memisoglu A, Martin WF, Pathak S. Buprenorphine/samidorphan combination for the adjunctive treatment of major depressive disorder: results of a phase III clinical trial (FORWARD-3). Neuropsychiatr Dis Treat. 2019; 15: 795?808.

Browne C, Lucki I. Targeting opioid dysregulation in depression for the development of novel therapeutics. Pharmacol Ther. 2019; 201: 51–76.

Bhagwagar Z, Wylezinska M, Taylor M, Jezzard P, Matthews PM, Cowen PJ. Increased brain GABA concentrations following acute administration of a selective serotonin reuptake inhibitor. Am J Psychiatry. 2004; 161: 368-70.

Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Boorman E, M Matthews P, J Cowen P. Low GABA concentrations in occipital cortex and anterior cingulate cortex in medication-free, recovered depressed patients. Int J Neuropsychopharmacol. 2008; 11: 255-60.

Benasi G, Guidi J, Offidani E, Balon R, Rickels K, Fava G, A: Benzodiazepines as a Monotherapy in Depressive Disorders: A Systematic Review. Psychother Psychosom. 2018; 87: 65-74.

Álamo C, Cuenca E, López-Muñoz F. Avances en psicofarmacología y perspectivas de futuro. En: Avendaño MC, Tamargo J, eds. Nuevos avances en medicamentos. Madrid: Real Academia Nacional de Farmacia, 2004, pp. 351-429

Dale E, Bang-Andersen B, Sánchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem Pharmacol. 2015; 95: 81-97.

Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol. 1990; 185: 1–10.

Álamo C, López-Muñoz F, García-García P. It is possible find an antidepressant with faster onset of action? Ketamine: Promise or reality? Ann Depress Anxiety. 2014; 1 (5): 4. id1021.

Takamori S. VGLUTs: 'exciting' times 151. for glutamatergic research? Neurosci Res. 2006; 55: 343-51.

Hashimoto K, Bruno D, Nierenberg J, Marmar CR, Zetterberg H, Blennow K, Pomara N. Abnormality in glutamine-glutamate cycle in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder: a 3-year follow-up study. Transl Psychiatry. 2016; 6: e744.

Magi S, Piccirillo, S, Amoroso S. The dual face of glutamate: from a neurotoxin to a potential survival factor—metabolic implications in health and disease. Cell Mol Life Sci. 2019; 76: 1473–88.

Kew JC, Kemp J. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl). 2005; 179: 4–29.

Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol. 2015; 23: 1-21.

Cao YJ, Wang Q, Zheng XX, Cheng Y, Zhang Y. Involvement of SNARE complex in the hippocampus and prefrontal cortex of offspring with depression induced by prenatal stress. J Affect Disord. 2018; 235: 374-83.

Garcia-Garcia AL, Elizalde N, Matrov D, Harro J, Wojcik SM, Venzala E, et al. Increased vulnerability to depressive-like behavior of mice with decreased expression of VGLUT1. Biol Psychiatry. 2009; 66: 275-82.

García-García AL, Venzala E, Elizalde N, Ramírez MJ, Urbiola A, Del Rio J, et al. Regulation of serotonin (5-HT) function by a VGLUT1 dependent glutamate pathway. Neuropharmacology. 2013; 70: 190-9.

Zink M, Vollmayr B, Gebicke-Haerter PJ, Henn FA. Reduced expression of glutamate transporters vGluT1, EAAT2 and EAAT4 in learned helpless rats, an animal model of depression. Neuropharmacology. 2010; 58: 465-73.

Uezato A, Meador-Woodruff JH, McCullumsmith RE. Vesicular glutamate transporter mRNA expression in the medial temporal lobe in major depressive disorder, bipolar disorder, and schizophrenia. Bipolar Disord. 2009; 11: 711-25.

Elizalde N, Pastor PM, Garcia-García AL, Serres F, Venzala E, Huarte J, et al. Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1. J Neurochem. 2010; 114: 1302-14.

Zhao J, Verwer RWH, Gao SF, Qi XR, Lucassen PJ, Kessels HW, Swaab DF. Prefrontal alterations in GABAergic and glutamatergic gene expression in relation to depression and suicide. J Psychiatr Res. 2018; 102: 261-74.

Yoon TY, Munson M. SNARE complex assembly and disassembly. Curr Biol. 2018; 28 (8): R397-R401.

Najera K, Fagan BM, Thompson PM. SNAP-25 in Major Psychiatric Disorders: A Review. Neuroscience. 2019; 420: 79?85.

Wang Q, Wang Y, Ji W, Zhou G, He K, Li Z, et al. SNAP25 is associated with schizophrenia and major depressive disorder in the Han Chinese population. J Clin Psychiatr. 2015; 76: e76–e82.

Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li H, et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex 2002; 12: 349–56.

Bonanno G, Giambelli R, Raiteri L, Tiraboschi E, Zappettini S, Musazzi L, et al. Chronic antidepressants reduce depolarization evoked glutamate release and protein interactions favoring formation of SNARE complex in hippocampus. J. Neurosci. 2005; 25: 3270–9.

Lazarevic V, Mantas I, Flais I, Svenningsson P. Fluoxetine Suppresses Glutamate- and GABA-Mediated Neurotransmission by Altering SNARE Complex. Int J Mol Sci. 2019; 20 (17): 4247.

O'Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr. 2017; 3 (1): 32.

Medina A, Burke S, Thompson RC, Bunney W Jr, Myers RM, Schatzberg A, et al. Glutamate transporters: a key piece in the glutamate puzzle of major depressive disorder. J Psychiatr Res. 2013; 47: 1150-6.

Zhang XH, Jia N, Zhao XY, Tang GK, Guan LX, Wang D, et al. Involvement of pGluR1, EAAT2 and EAAT3 in offspring depression induced by prenatal stress. Neuroscience. 2013; 250: 333-41.

Chen JX, Yao LH, Xu BB, Qian K, Wang HL, Liu ZC, et al. Glutamate transporter 1-mediated antidepressant-like effect in a rat model of chronic unpredictable stress. J Huazhong Univ Sci Technolog Med Sci. 2014; 34: 838-44.

Reagan LP, Rosell DR, Wood GE, Spedding M, Muñoz C, Rothstein J, et al. Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: Reversal by tianeptine. Proc Natl Acad Sci USA. 2004; 101: 2179-84.

Frizzo ME. The Effect of Glutamatergic Modulators on Extracellular Glutamate: How Does this Information Contribute to the Discovery of Novel Antidepressants?. Curr Ther Res Clin Exp. 2019; 91: 25?32.

Zhu X, Ye G, Wang Z, Luo J, Hao X. Sub-anesthetic doses of ketamine exert antidepressant-like effects and upregulate the expression of glutamate transporters in the hippocampus of rats. Neurosci Lett. 2017; 639: 132-37.

Kalkman HO. Novel Treatment Targets Based on Insights in the Etiology of Depression: Role of IL-6 Trans-Signaling and Stress-Induced Elevation of Glutamate and ATP. Pharmaceuticals 2019; 12: 113.

Levine J, Panchalingam K, Rapoport A, Gershon S, McClure RJ, Pettegrew JW. Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatr. 2000: 47: 586–93.

Frye MA, Tsai GE, Huggins T, Coyle JT, Post RM. Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatr. 2007; 61: 162–66.

Garakani A, Martinez JM, Yehuda R, Gorman JM. Cerebrospinal fluid levels of glutamate and corticotropin releasing hormone in major depression before and after treatment. J Affect Disord. 2013; 146: 262–5.

Geddes SD, Assadzada S, Sokolovski A, Bergeron R, Haj-Dahmane S, Beïque JC. Time-dependent modulation of glutamate synapses onto 5-HT neurons by antidepressant treatment. Neuropharmacology. 2015; 95: 130–43.

Inoshita M, Umehara H, Watanabe SY, Nakataki M, Kinoshita M, Tomioka Y, et al. Elevated peripheral blood glutamate levels in major depressive disorder. Neuropsychiatr Dis Treat. 2018; 14: 945–53.

Madeira C, Vargas-Lopes C, Brandão CO, Reis T, Laks J, Panizzutti R, Ferreira ST. Elevated Glutamate and Glutamine Levels in the Cerebrospinal Fluid of Patients With Probable Alzheimer's Disease and Depression. Front Psychiatr. 2018; 9: 561.

Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, et al. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatr. 2019; 24: 952-64.

Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatr. 2009; 33:70-5.

Barnes SA, Sheffler DJ, Semenova S, Cosford NDP, Bespalov A. Metabotropic Glutamate Receptor 5 as a Target for the Treatment of Depression and Smoking: Robust Preclinical Data but Inconclusive Clinical Efficacy. Biol Psychiatr. 2018; 83: 955-62.

Kova?evi? T, Skelin I, Minuzzi L, Rosa-Neto P, Diksic M. Reduced metabotropic glutamate receptor 5 in the Flinders Sensitive Line of rats, an animal model of depression: an autoradiographic study. Brain Res Bull. 2012; 87: 406-12.

Abdallah CG, Hannestad J, Mason GF, Holmes SE, DellaGioia N, Sanacora G, et al. Metabotropic Glutamate Receptor 5 and Glutamate Involvement in Major Depressive Disorder: A Multimodal Imaging Study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2: 449-56.

Karolewicz B, Feyissa AM, Chandran A, Legutko B, Ordway GA, Rajkowska G, et al. Glutamate receptors expression in postmortem brain from depressed subjects. Biol Psychiatr. 2009; 65 (Suppl): 177S.

Hasler G. Abnormal prefrontal glutamatergic and GABAeric systems in mood and anxiety disorders. Biol Psychiatr. 2009; 65 (Suppl): 176S–177S.

Deschwanden A, Karolewicz B, Feyissa AM, Treyer V, Ametamey SM, Johayem A, et al. Reduced metabotropic glutamate receptor 5 density in major depression determined by [11C]ABP688 PET and postmortem study. Am J Psychiatr. 2011; 168: 727–34.

Henter ID, de Sousa RT, Zarate CA Jr. Glutamatergic Modulators in Depression. Harv Rev Psychiatry. 2018; 26: 307-19.

Feyissa AM, Woolverton WL, Miguel-Hidalgo JJ, Wang Z, Kyle PB, Hasler G, et al. Elevated level of metabotropic glutamate receptor 2/3 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatr. 2010; 34: 279?83.

Treccani G, Gaarn du Jardin K, Wegener G, Müller HK. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the flinders sensitive line rat model of depression. Synapse. 2016; 70: 471-4.

Gray AL, Hyde TM, Deep-Soboslay A, Kleinman JE, Sodhi MS. Sex differences in glutamate receptor gene expression in major depression and suicide. Mol Psychiatr. 2015; 20: 1057-68.

Rong X, Xiong Z, Cao B, Chen J, Li M, Li Z. Case report of anti-N-methyl-D-aspartate receptor encephalitis in a middle-aged woman with a long history of major depressive disorder. BMC Psychiatr. 2017; 17 (1): 320.

Karolewicz B, Szebeni K, Gilmore T, Maciag D, Stockmeier CA, Ordway GA. Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol. 2009; 12: 143-53.

Francija E, Petrovic Z, Brkic Z, Mitic M, Radulovic J, Adzic M. Disruption of the NMDA receptor GluN2A subunit abolishes inflammation-induced depression. Behav Brain Res. 2019; 359: 550-9.

Lai CH. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Res. 2013; 211: 37–46.

Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim YK. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatr. 2019; 94: 109668.

Gibbons AS, Brooks L, Scarr E, Dean B. AMPA receptor expression is increased post-mortem samples of the anterior cingulate from subjects with major depressive disorder. J Affect Disord. 2012; 136:1232-7.

Garibova TL, Gudasheva TA, Seredenin SB. A New Component in the Mechanism of Regulation of Endogenous Depressive-Like States. Dokl Biochem Biophys. 2019; 488: 324-6.

Yi ES, Oh S, Lee JK, Leem YH. Chronic stress-induced dendritic reorganization and abundance of synaptosomal PKA-dependent CP-AMPA receptor in the basolateral amygdala in a mouse model of depression. Biochem Biophys Res Commun. 2017; 486: 671-8.

Chourbaji S, Vogt MA, Fumagalli F, Sohr R, Frasca A, Brandwein C, et al. AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression. FASEB J. 2008; 22: 3129-34.

Barbon A, Caracciolo L, Orlandi C, Musazzi L, Mallei A, La Via L, et al. Chronic antidepressant treatments induce a time-dependent up-regulation of AMPA receptor subunit protein levels. Neurochem Int. 2011; 59: 896-905.

Szegedi V, Juhász G, Zhang X, Barkóczi B, Qi H, Madeira A, et al. Tianeptine potentiates AMPA receptors by activating CaMKII and PKA via the p38, p42/44 MAPK and JNK pathways. Neurochem Int. 2011; 59: 1109-22.

Freudenberg F, Celikel T, Reif A. The role of?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in depression: central mediators of pathophysiology and antidepressant activity? Neurosci Biobehav Rev. 2015; 52: 193-206.

Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013; 16: 69–82.

Möhler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology. 2012; 62: 42-53.

Jaso BA, Niciu MJ, Iadarola ND, Lally N, Richards EM, Park M, et al. Therapeutic Modulation of Glutamate Receptors in Major Depressive Disorder. Curr Neuropharmacol. 2017; 15: 57-70.

Schule C, Nothdurfter C, Rupprecht R. The role of allopregnanolone in depression and anxiety. Prog Neurobiol. 2014; 113: 79–87.

Trifu S, Vladuti A, Popescu A. The neuroendocrinological aspects of pregnancy and postpartum depression. Acta Endocrinol (Buchar). 2019; 15: 410-5.

Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 2005; 6: 215-29.

Walton N, Maguire J. Allopregnanolone-based treatments for postpartum depression: Why/how do they work? Neurobiol Stress. 2019; 11: 100198.

Azhar Y, Din AU. Brexanolone. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2019.

Kanes SJ, Colquhoun H, Doherty J, Raines S, Hoffmann E, Rubinow DR, et al. Open?label, proof?of?concept study of brexanolone in the treatment of severe postpartum depression. Hum. Psychopharmacol. 2017; 32 (2): e2576.

Kanes S, Colquhoun H, Gunduz-Bruce H, Raines S, Arnold R, Schacterle A, et al. Brexanolone (SAGE-547 injection) in post-partum depression: a randomised controlled trial. Lancet. 2017; 390: 480–9.

Meltzer-Brody S, Colquhoun H, Riesenberg R, Epperson CN, Deligiannidis KM, Rubinow DR, et al. Brexanolone injection in post-partum depression: two multicentre, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet. 2018; 392: 1058–70.

Hutcherson TC, Cieri-Hutcherson NE, Gosciak MF. Brexanolone for postpartum depression. Am J Health Syst Pharm. 2020; 77: 336-45.

Fasipe OJ. The emergence of new antidepressants for clinical use: Agomelatine paradox versus other novel agents. IBRO Rep. 2019; 6: 95?110.

Zarate CA Jr, Payne JL, Quiroz J, Sporn J, Denicoff KK, Luckenbaugh D, Manji HK. An open label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatr. 2004; 161: 171–4.

Sanacora G, Kendell SF, Levin Y, Simen AA, Fenton LR, Coric V, Krystal JH. Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiatry. 2007; 61: 822–5.

Wilkinson ST, Sanacora G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov Today. 2019; 24: 606–15.

Salardini E, Zeinoddini A, Mohammadinejad P, Khodaie-Ardakani MR, Zahraei N, Zeinoddini A, Akhondzadeh S. Riluzole combination therapy for moderate-to-severe major depressive disorder: A randomized, double-blind, placebo-controlled trial. J Psychiatr Res. 2016; 75: 24-30.

Yao R, Wang H, Yuan M, Wang G, Wu C. Efficacy and safety of riluzole for depressive disorder: A systematic review and meta-analysis of randomized placebo-controlled trials. Psychiatry Res. 2020; 284: 112750.

Kato T, Duman RS, Rapastinel A. A novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms. Pharmacol Biochem Behav. 2020; 188: 172827.

Sanacora G, Johnson MR, Khan A, Atkinson SD, Riesenberg RR, Schronen JP, et al. Adjunctive Lanicemine (AZD6765) in Patients with Major Depressive Disorder and History of Inadequate Response to Antidepressants: A Randomized, Placebo-Controlled Study. Neuropsychopharmacology. 2017; 42: 844-53.

Hirota K, Lambert DG. Ketamine: new uses for an old drug? Br J Anaesth. 2011; 107: 123-6.

Rosenblat JD, Carvalho AF, Li M, Lee Y, Subramanieapillai M, McIntyre RS. Oral Ketamine for Depression: A Systematic Review. J Clin Psychiatr. 2019; 80 (3): 18r12475.

Pribish A, Wood N, Kalava A. A Review of Nonanesthetic Uses of Ketamine. Anesthesiol Res Pract. 2020; 5798285.

Liao Y, Tang YL, Hao W. Ketamine and international regulations. Am J Drug Alcohol Abuse. 2017; 43: 495–504.

Carreno FR, Lodge DJ, Frazer A. Ketamine: Leading us into the future for development of antidepressants. Behav Brain Res. 2020; 383: 112532.

Widman AJ, McMahon LL. Disinhibition of CA1 pyramidal cells by low-dose ketamine and other antagonists with rapid antidepressant efficacy. Proc Natl Acad Sci USA. 2018; 115 (13): E3007–E3016.

Wang Y, Toledo-Rodriguez M, Gupta A, Wu C, Silberberg G, Luo J, Markram H. Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. J Physiol. 2004; 561: 65-90.

Ali F, Gerhard DM, Sweasy K, Pothula S, Pittenger C, Duman RS, Kwan AC. Ketamine disinhibits dendrites and enhances calcium signals in prefrontal dendritic spines. Nat Commun. 2020; 11: 72.

Aleksandrova LR, Phillips AG, Wang YT. Antidepressant effects of ketamine and the roles of AMPA glutamate receptors and other mechanisms beyond NMDA receptor antagonism. J Psychiatry Neurosci. 2017; 42: 222-9.

Zhang JC, Li SX, Hashimoto K. R (?)-ketamine shows greater potency and longer lasting antidepressant effects than S (+)-ketamine. Pharmacol Biochem Behav. 2014; 116: 137–41.

Henley JM, Wilkinson KA. Synaptic AMPA receptor composition in development, plasticity and disease. Nat Rev Neurosci. 2016; 17: 337-50.

Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016; 22: 238-49.

Muthukumaraswamy SD, Shaw AD, Jackson LE, Hall J, Moran R, Saxena N. Evidence that Subanesthetic Doses of Ketamine Cause Sustained Disruptions of NMDA and AMPA-Mediated Frontoparietal Connectivity in Humans. J Neurosci. 2015; 35: 11694-706.

Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018; 23: 801-11.

Gould TD, Zarate CA Jr, Thompson SM. Molecular Pharmacology and Neurobiology of Rapid-Acting Antidepressants. Annu Rev Pharmacol Toxicol. 2019; 59: 213?36.

Ma Z, Zang T, Birnbaum SG, Wang Z, Johnson JE, Zhang CL, Parada LF. TrkB dependent adult hippocampal progenitor differentiation mediates sustained ketamine antidepressant response. Nat Commun. 2017; 8 (1): 1668.

Liu WX, Wang J, Xie ZM, Xu N, Zhang GF, Jia M, et al. Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology (Berl). 2016; 233: 405?15.

Liu RJ, Lee FS, Li XY, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012; 71: 996–1005.

Yang C, Shirayama Y, Zhang JC, Ren Q, Yao W, Ma M, et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl Psychiatry. 2015; 5 (9): e632.

Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol. 2014; 18 (1): pii: pyu033.

Strasburger SE, Bhimani PM, Kaabe JH, Krysiak JT, Nanchanatt DL, Nguyen TN, et al. What is the mechanism of Ketamine's rapid-onset antidepressant effect? A concise overview of the surprisingly large number of possibilities. J Clin Pharm Ther. 2017; 42: 147-54.

Huang YJ, Lane HY, Lin CH. New Treatment Strategies of Depression: Based on Mechanisms Related to Neuroplasticity. Neural Plast. 2017; 4605971.

Abdallah CG, Sanacora G, Duman RS, Krystal JH. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu Rev Med. 2015; 66: 509–23.

Wei Y, Chang L, Hashimoto K. A historical review of antidepressant effects of ketamine and its enantiomers. Pharmacol Biochem Behav. 2020; 190: 172870.

Tan S, Wang Y, Chen K, Long Z, Zou J. Ketamine Alleviates Depressive-Like Behaviors via Down-Regulating Inflammatory Cytokines Induced by Chronic Restraint Stress in Mice. Biol Pharm Bull. 2017; 40: 1260-7.

Chen MH, Li CT, Lin WC, Hong CJ, Tu PC, Bai YM, et al. Rapid inflammation modulation and antidepressant efficacy of a low-dose ketamine infusion in treatment-resistant depression: A randomized, double-blind control study. Psychiatry Res. 2018; 269: 207-11.

Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatr. 2018; 23: 59-69.

Witkin JM, Monn JA, Schoepp DD, Li X, Overshiner C, Mitchell SN, et al. The Rapidly Acting Antidepressant Ketamine and the mGlu2/3 Receptor Antagonist LY341495 Rapidly Engage Dopaminergic Mood Circuits. J Pharmacol Exp Ther. 2016; 358: 71-82.

Fukumoto K, Iijima M, Chaki S. The Antidepressant Effects of an mGlu2/3 Receptor Antagonist and Ketamine Require AMPA Receptor Stimulation in the mPFC and Subsequent Activation of the 5-HT Neurons in the DRN. Neuropsychopharmacology. 2016; 41: 1046-56.

Pham TH, Mendez-David I, Defaix C, Guiard BP, Tritschler L, David DJ, Gardier AM. Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice. Neuropharmacology. 2017; 112 (Pt A) :198-209.

Fukumoto K, Iijima M, Funakoshi T, Chaki S. Role of 5-HT1A Receptor Stimulation in the Medial Prefrontal Cortex in the Sustained Antidepressant Effects of Ketamine. Int J Neuropsychopharmacol. 2018; 21: 371-81.

Sial OK, Parise EM, Parise LF, Gnecco T, Bolaños-Guzmán CA. Ketamine: The final frontier or another depressing end?. Behav Brain Res. 2020; 383: 112508.

Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, et al. Attenuation of Antidepressant Effects of Ketamine by Opioid Receptor Antagonism. Am J Psychiatry. 2018; 175: 1205-15.

Williams NR, Heifets BD, Bentzley BS, Blasey C, Sudheimer KD, Hawkins J, et al. Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism. Mol Psychiatr. 2019; 24: 1779-86.

Yoon G, Petrakis IL, Krystal JH. Association of Combined Naltrexone and Ketamine With Depressive Symptoms in a Case series of Patients With Depression and Alcohol Use Disorder. JAMA Psychiatr. 2019; 76: 337-8.

Marton T, Barnes DE, Wallace A, Woolley JD. Concurrent Use of Buprenorphine, Methadone, or Naltrexone Does Not Inhibit Ketamine's Antidepressant Activity. Biol Psychiatr. 2019; 85 (12): e75-e76.

Mathew SJ, Rivas-Grajales AM. Does the opioid system block or enhance the antidepressant effects of ketamine? Chronic Stress (Thousand Oaks). 2019; 3: 3: 2470547019852073.

Miller JJ. Ketamine/esketamine: Putative mechanisms of action. Curr Psychiatr. 2020; 19: 32-6.

Sofia RD, Harakal JJ. Evaluation of ketamine HCl for anti-depressant activity. Arch Int Pharmacodyn Ther. 1975; 214: 68–74.

Domino EF. Taming the ketamine tiger. 1965. Anesthesiology. 2010; 113: 678–84.

López-Muñoz F, Álamo C, Domino EF. History of Psychopharmacology. Arlington: NPP Books, 2014.

Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. Antidepressant effects of ketamine in depressed patients. Biol Psychiatr. 2000; 47: 351-4.

Zarate Jr CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatr. 2006; 63: 856–64.

Zarate CA Jr. Ketamine: a new chapter in antidepressant development. Braz J Psychiatry. 2020; May 11: S1516-44462020005013205.

Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, et al. Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Am J Psychiatr. 2019; 176: 401–9.

Domany Y, Shelton RC, McCullumsmith CB. Ketamine for acute suicidal ideation. An emergency department intervention: A randomized, double-blind, placebo-controlled, proof-of-concept trial. Depress Anxiety. 2020; 37: 224-33.

Price RB, Iosifescu DV, Murrough JW, Chang LC, Al Jurdi RK, Iqbal SZ, et al. Effects of ketamine on explicit and implicit suicidal cognition: a randomized controlled trial in treatment-resistant depression. Depress Anxiety. 2014; 31: 335-43.

Ballard ED, Wills K, Lally N, Richards EM, Luckenbaugh DA, Walls T, et al. Anhedonia as a clinical correlate of suicidal thoughts in clinical ketamine trials. J Affect Disord. 2017; 218: 195-200.

Kryst J, Kawalec P, Pilc A. Efficacy and safety of intranasal esketamine for the treatment of major depressive disorder. Exp Opin Pharmacother. 2020; 21: 9-20.

Andrade C. Intranasal drug delivery in neuropsychiatry: Focus on intranasalketamine for refractory depression. J Clin Psychiatr. 2015; 76: e628–31. 21.

Singh JB, Fedgchin M, Daly E, Xi L, Melman C, De Bruecker G, et al. Intravenous Esketamine in Adult Treatment-Resistant Depression: A Double-Blind, Double-Randomization, Placebo-Controlled Study. Biol Psychiatr. 2016; 80: 424-31.

Wajs E, Aluisio L, Holder R, Daly EJ, Lane R, Lim P, et al. Esketamine Nasal Spray Plus Oral Antidepressant in Patients With Treatment-Resistant Depression: Assessment of Long-Term Safety in a Phase 3, Open-Label Study (SUSTAIN-2). J Clin Psychiatr. 2020; 81 (3): 19m12891.

Daly EJ, Trivedi MH, Janik A, Li H, Zhang Y, Li X, et al. Efficacy of Esketamine Nasal Spray Plus Oral Antidepressant Treatment for Relapse Prevention in Patients With Treatment-Resistant Depression: A Randomized Clinical Trial. JAMA Psychiatr. 2019; 76: 893-903.

Popova V, Daly EJ, Trivedi M, Cooper K, Lane R, Lim P, et al. Efficacy and Safety of Flexibly Dosed Esketamine Nasal Spray Combined With a Newly Initiated Oral Antidepressant in Treatment-Resistant Depression: A Randomized Double-Blind Active-Controlled Study. Am J Psychiatr. 2019; 176: 428-38.

Kim J, Farchione T, Potter A, Chen Q, Temple R. Esketamine for Treatment-Resistant Depression - First FDA-Approved Antidepressant in a New Class. N Engl J Med. 2019; 381: 1-4.

Zheng W, Cai DB, Xiang YQ, Zheng W, Jiang WL, Sim K, et al. Adjunctive intranasal esketamine for major depressive disorder: A systematic review of randomized double-blind controlled-placebo studies. J Affect Disord. 2020; 265: 63-70.

Fu DJ, Ionescu DF, Li X, Lane R, Lim P, Sanacora G, et al. Esketamine Nasal Spray for Rapid Reduction of Major Depressive Disorder Symptoms in Patients Who Have Active Suicidal Ideation With Intent: Double-Blind, Randomized Study (ASPIRE I). J Clin Psychiatr. 2020; 81 (3): pii: 19m13191.

Ionescu DF, Canuso CM, Fu DF, Qiu X, Lane R, Lim P, et al. Esketamine nasal spray for rapid reduction of major depressive disorder symptoms in patientsat imminent risk for suicide: ASPIRE-2 study. Copenhagen: 32nd ECNP, 2019, 31.

Doherty T, Wajs E, Melkote R, Miller J, Singh JB, Weber MA. Cardiac Safety of Esketamine Nasal Spray in Treatment-Resistant Depression: Results from the Clinical Development Program. CNS Drugs. 2020; 34: 299-310.

González-Pinto A. Esketamina intranasal: un nuevo abordaje para el tratamiento de la depresión resistente al tratamiento. Psiquiatr Biol. 2020; 27: 9-15.

Pochwat B, Pa?ucha-Poniewiera A, Szewczyk B, Pilc A, Nowak G. NMDA antagonists under investigation for the treatment of major depressive disorder. Exp Opin Investig Drugs. 2014; 23: 1181?92.

Publicado

30-11-2020

Número

Sección

Artículos de Revisión